दीर्घवृत्त $4{x^2} + 9{y^2} = 36$ के बिन्दु $(3, -2)$ पर स्पर्श रेखा तथा अभिलम्ब के समीकरण क्रमश: हैं
$\frac{x}{3} - \frac{y}{2} = 1,\;\frac{x}{2} + \frac{y}{3} = \frac{5}{6}$
$\frac{x}{3} + \frac{y}{2} = 1,\;\frac{x}{2} - \frac{y}{3} = \frac{5}{6}$
$\frac{x}{2} + \frac{y}{3} = 1,\;\frac{x}{3} - \frac{y}{2} = \frac{5}{6}$
इनमें से कोई नहीं
दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की लम्बवत् स्पर्शियों के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 3,0), a=4$
मान लीजिए $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a > b$, एक दीर्घवृत है जिसकी नाभियाँ $F_1$ एवं $F_2$ हैं। $A O$ इसकी अर्धलघु $(semi-minor)$ अक्ष है, और $O$ दीर्घवृत का केंद्र है। रेखाएँ $A F_1$ एवं $A F_2$ को बढ़ाने पर वो दीर्घवृत को पुन: क्रमशः $B$ एवं $C$ बिन्दुओं पर काटती हैं। मान लीजिए कि $A B C$ एक समबाहु त्रिभुज है, तब दीर्घवृत की उत्केन्द्रता निम्न है :
वक्र $16{x^2} + 25{y^2} = 400$ की नाभियाँ हैं
दीर्घवृत्त (ellipse)
$\frac{x^2}{4}+\frac{y^2}{3}=1$
पर विचार कीजिए। माना कि $H (\alpha, 0), 0<\alpha<2$, एक बिंदु (point) है। बिंदु $H$ से होती हुई एवं $y$-अक्ष के समांतर (parallel to the $y$-axis) एक सरल रेखा (straight line) दीर्घवृत्त एवं इसके सहवृत्त (auxiliary circle) को प्रथम चतुर्थांश (first quadrant) में क्रमशः बिंदुओं $E$ एवं $F$ पर प्रतिच्छेदित (intersect) करती है। बिंदु $E$ पर दीर्घवृत्त की स्पर्श रेखा (tangent) धनात्मक $x$-अक्ष को एक बिंदु $G$ पर प्रतिच्छेदित करती है। मान लिजिए कि $F$ एवं मूलबिंदु (origin) को जोड़ने वाली सरल रेखा, धनात्मक $x$-अक्ष के साथ एक कोण (angle) $\phi$ बनाती है।
$List-I$ | $List-II$ |
यदि $\phi=\frac{\pi}{4}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
यदि $\phi=\frac{\pi}{3}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($Q$) $1$ |
यदि $\phi=\frac{\pi}{6}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($R$) $\frac{3}{4}$ |
यदि $\phi=\frac{\pi}{12}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
सही विकल्प हैं :