ઉપવલય $\frac{x^2}{4}+\frac{y^2}{2}=1$ ની જીવાની લંબાઈ મેળવો કે જેનું મધ્ય બિંદુ $\left(1, \frac{1}{2}\right)$ છે.

  • [JEE MAIN 2025]
  • A
    $\frac{2}{3} \sqrt{15}$
  • B
    $\frac{5}{3} \sqrt{15}$
  • C
    $\frac{1}{3} \sqrt{15}$
  • D
    $\sqrt{15}$

Similar Questions

વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.

પ્રકાશનું કિરણ બિંદુ $(2,1)$ માંથી પસાર થાય ને $y$ - અક્ષ પરનું બિંદુ $P$ થી પરાવર્તિત પામી ને બિંદુ $(5,3)$ માંથી પસાર થાય છે. પરાવર્તિત કિરણ એ ઉપવલયની નિયામિકા બને છે  કે જેની ઉત્કેન્દ્રિતા $\frac{1}{3}$  છે અને નજીકના નાભીનું આ નિયામિકા થી અંતર $\frac{8}{\sqrt{53}}$ હોય તો બીજી નિયમિકાનું સમીકરણ મેળવો.

  • [JEE MAIN 2021]

જો ઉપવલય $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ અને વર્તુળ $x ^{2}+ y ^{2}=4 b , b > 4$ નાં છેદબિંદુઓ વક્ર $y^{2}=3 x^{2}$ પર આવેલ હોય, તો $b=..... .$

  • [JEE MAIN 2021]

જો $3 x+4 y=12 \sqrt{2}$ એ કોઈક $a \in \mathrm{R},$ માટે ઉપવલય $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{9}=1$ નો સ્પર્શક હોય તો બંને નાભી વચ્ચેનું અંતર મેળવો.

  • [JEE MAIN 2020]

જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....