The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is:

  • [JEE MAIN 2025]
  • A
    $\frac{2}{3} \sqrt{15}$
  • B
    $\frac{5}{3} \sqrt{15}$
  • C
    $\frac{1}{3} \sqrt{15}$
  • D
    $\sqrt{15}$

Similar Questions

The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y = 12$, is

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

The position of the point $(4, -3)$ with respect to the ellipse $2{x^2} + 5{y^2} = 20$ is

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]

If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is