${10^{ - 5}}$ सेमी त्रिज्या वाली जल की एक बूँद पर एक इलेक्ट्रॉन का आवेश है। उसे वायु में निलम्बित करने के लिए आवश्यक वैद्युत क्षेत्र की तीव्रता होगी लगभग

($g$ = $10$ न्यूटन/किग्रा, $e$  = $1.6 × 10^{-9}$ कूलॉम)

  • A

    $260\,$ वोल्ट/सेमी

  • B

     $260\,$ न्यूटन/कूलॉम

  • C

    $130\,$ वोल्ट/सेमी

  • D

    $130\,$ न्यूटन/कूलॉम

Similar Questions

दो बिन्दु आवेशों $q _{1}(\sqrt{10} \,\mu C )$ तथा $q _{2}(-25 \,\mu C )$ को $x$-अक्ष पर क्रमश : $x =1\, m$ तथा $x =4 \,m$ पर रखा गया है। $y$-अक्ष पर बिन्दु $y =3 \,m$ पर विधुत क्षेत्र का मान
( $V / m$ में) होगा।

$\left[\right.$ दिया है : $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,Nm ^{2} C ^{-2}\right]$

  • [JEE MAIN 2019]

चार बिन्दु आवेशों $- q ,+ q ,+ q$ और $- q$ को $y$-अक्ष पर, क्रमश: $y =-2 d , y =- d , y =+ d$ तथा $y =+2 d$ पर रखा गया है। $x$-अक्ष पर उपस्थित एक बिन्दु $x = D$, जहाँ $D \gg d$ है, पर विधुत क्षेत्र के परिमाण $E$ का व्यवहार होगा?

  • [JEE MAIN 2019]

$a$ भुजा वाले एक समबाहु त्रिभुज के दो कोनों पर दो आवेश प्रत्येक $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ रखें हैं। तीसरे कोने पर विद्युत क्षेत्र ${E_3}$ है। तो क्या सही है $({E_0} = q/4\pi {\varepsilon _0}{a^2})$

$0.003\, gm$ द्रव्यमान का आवेशित कण नीचे की ओर कार्यरत विद्युत क्षेत्र $6 \times {10^4}\,N/C$ में विरामावस्था में है। आवेश का परिमाण होगा

एक धनावेशित पतली धातु की वलय जिसकी त्रिज्या $R$, $xy$-तल में स्थित है तथा इसका केन्द्र मूल बिन्दु $O$ पर है। एक ऋणावेशित कण $P$ विराम अवस्था से बिन्दु $(0,\,0,\,{z_0})$ से छोड़ा जाता है, यहाँ ${z_0} > 0$ तो $P$ की गति होगी

  • [IIT 1998]