दो बिंदु आवेश $q_{\Lambda}=3 \mu C$ तथा $q _{ B }=-3 \mu C$ निर्वात में एक-दूसरे से $20\, cm$ दूरी पर स्थित हैं।
$(a)$ दोनों आवेशों को मिलाने वाली रेखा $AB$ के मध्य बिंदु $O$ पर विध्यूत क्षेत्र कितना है?
$(b)$ यद् $1.5 \times 10^{-9} C$ परिमाण का कोई ऋर्णात्मक परीक्षण आवेश इस बिंदु पर रखा जाए तो यह परीक्षण आवेश कितने बल का अनुभव करेगा?
$(a)$ The situation is represented in the given figure. $O$ is the mid-point of line $AB.$
Distance between the two charges, $AB =20\, cm$
$\therefore AO = OB =10 \,cm$
Net electric field at point $O = E$
Electric field at point $O$ caused by $+3 \,\mu\, C$ charge,
$E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 10^{-6}}{(O A)^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 10^{-6}}{\left(10 \times 10^{-2}\right)^{2}} N C^{-1} \quad$ along $O B$
Where, $\varepsilon_{0}=$ Permittivity of free space and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,N\,m ^{2} \,C ^{-2}$
Therefore, Magnitude of electric field at point $O$ caused by $-3\, \mu \,C$ charge,
$E_{2}=\left|\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{-3 \times 10^{-6}}{(O B)^{2}}\right|$$=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 10^{-6}}{\left(10 \times 10^{-2}\right)^{2}} N C^{-1}$ along $O B$
$\therefore E=E_{1}+E_{2}$$=2 \times \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 \times 10^{-6}}{\left(10 \times 10^{-2}\right)^{2}} N C^{-1} \quad$ along $O B$
$\therefore E=2 \times 9 \times 10^{9} \times \frac{3 \times 10^{-6}}{\left(10 \times 10^{-2}\right)^{2}} \,N\, C^{-1}$
$=5.4 \times 10^{6} \,N\,C ^{-1}$ along $OB$
Therefore, the electric field at mid-point $O$ is $5.4 \times 10^{6} \,N\, C ^{-1}$ along $OB$.
$(b)$ A test charge of amount $1.5 \times 10^{-9} C$ is placed at mid-point $O$. $q=1.5 \times 10^{-9} \,C$
Force experienced by the test charge $= F$ $\therefore F = qE$
$=1.5 \times 10^{-9} \times 5.4 \times 10^{6}$
$=8.1 \times 10^{-3} \,N$
The force is directed along line $OA$. This is because the negative test charge is repelled by the charge placed at point $B$ but attracted towards point $A$. Therefore, the force experienced by the test charge is $8.1 \times 10^{-3}\, N$ along $OA$.
$20\, \mu\, C$ तथा $-5 \,\mu\, C$ आवेशों के दो कण $A$ और $B , 5\,cm$ दूरी पर स्थिर रखे जाते है। किस स्थिति पर तीसरा आवेश रखा जाए कि, वह कोई बल अनुभव न करे?
$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :
त्रिज्या $R$ के एक एकसमान आवेशित वलय के विध्युत क्षेत्र का मान उसके अक्ष पर केंद्र से $h$ दूरी पर अधिकतम है। $h$ का मान होगा:
एक आवेश से $0.1\,m$ की दूरी पर विद्युत क्षेत्र $1\,N/C$ है। आवेश का परिमाण होगा
किसी विद्युत क्षेत्र में संतुलन की अवस्था में इलेक्ट्रॉन के द्वारा अनुभव किया गया विद्युतीय बल उसके भार के तुल्य है, विद्युत क्षेत्र की तीव्रता होगी