The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by
${\mathop{\rm Re}\nolimits} (z) > 0$
${\mathop{\rm Re}\nolimits} (z) < 0$
${\mathop{\rm Re}\nolimits} (z) > 2$
None of these
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is:
If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10},$ then
If $z $ is a complex number of unit modulus and argument $\theta$, then ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + (\bar z)}}} \right)$ equals.
If $\alpha $ and $\beta $ are different complex numbers with $|\beta | = 1$, then $\left| {\frac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ is equal to
If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value