The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [AIEEE 2002]
  • [IIT 1982]
  • A

    ${\mathop{\rm Re}\nolimits} (z) > 0$

  • B

    ${\mathop{\rm Re}\nolimits} (z) < 0$

  • C

    ${\mathop{\rm Re}\nolimits} (z) > 2$

  • D

    None of these

Similar Questions

Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-$I$ to the correct entries in List-$II$.

List-$I$ List-$II$
($P$) $|z|^2$ is equal to ($1$) $12$
($Q$) $|z-\bar{z}|^2$ is equal to ($2$) $4$
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to ($3$) $8$
($S$) $|z+1|^2$ is equal to ($4$) $10$
  ($5$) $7$

The correct option is:

  • [IIT 2023]

If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10},$ then

  • [JEE MAIN 2020]

If $z $ is a complex number of unit modulus and  argument $\theta$, then ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + (\bar z)}}} \right)$ equals.

  • [JEE MAIN 2013]

If $\alpha $ and $\beta $ are different complex numbers with $|\beta | = 1$, then $\left| {\frac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ is equal to

  • [IIT 1992]

If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value