If $\alpha $ and $\beta $ are different complex numbers with $|\beta | = 1$, then $\left| {\frac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ is equal to

  • [IIT 1992]
  • A

    $0$

  • B

    $3$

  • C

    $1$

  • D

    $2$

Similar Questions

The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$ 

Let $z$be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} \,(z) > 0$. Then $arg(z)$ is equal to

If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [AIEEE 2002]

If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value