If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value

  • A

    $\frac{\pi }{3} + 2n\pi ,n \in I$

  • B

    $n\pi + \frac{\pi }{6},n \in I$

  • C

    $n\pi - \frac{\pi }{3},n \in I$

  • D

    $2n\pi - \frac{\pi }{3},n \in I$

Similar Questions

If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$

The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is

If $z$ is a complex number such that ${z^2} = {(\bar z)^2},$ then

If $z $ is a complex number of unit modulus and  argument $\theta$, then ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + (\bar z)}}} \right)$ equals.

  • [JEE MAIN 2013]