वृत्तों ${x^2} + {y^2} - 3x - 4y + 5 = 0$ तथा $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ के मूलाक्ष की प्रवणता है

  • A

    $\frac{1}{3}$

  • B

    $ - \frac{1}{{10}}$

  • C

    $ - \frac{1}{2}$

  • D

    $ - \frac{2}{3}$

Similar Questions

${x^2} + {y^2} + 2gx + c = 0$, ($c < 0$ के लिये) द्वारा समाक्ष वृत्त का निकाय प्रस्तुत करता है

यदि ${x^2} + {y^2} + px + 3y - 5 = 0$ व ${x^2} + {y^2} + 5x$$ + py + 7 = 0$ परस्पर समकोण पर काटते हैं तो $p$ का मान है

वृत्तों $2{x^2} + 2{y^2} - 7x = 0$ और ${x^2} + {y^2} - 4y - 7 = 0$ के मूलाक्ष (radical axis) का समीकरण होगा

उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} - 6x + 6y + 17 = 0$ को बाह्यत: स्पर्श करता है एवं जिस पर रेखायें ${x^2} - 3xy - 3x + 9y = 0$ अभिलम्ब हैं, है

यदि वृत्त ${x^2} + {y^2} + 6x - 2y + k = 0$ वृत्त ${x^2} + {y^2} + 2x - 6y - 15 = 0$ की परिधि को समद्विभाजित करता है, तो $k$ का मान है