The general value of $\theta $satisfying the equation $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ is
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$n\pi + {( - 1)^n}\frac{\pi }{2}$
$n\pi + {( - 1)^n}\frac{{5\pi }}{6}$
$n\pi + {( - 1)^n}\frac{{7\pi }}{6}$
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $
The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is