કોઇ $n$ પૂર્ણાક માટે $\sin x - \cos x = \sqrt 2 $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi $
$2n\pi + \frac{{3\pi }}{4}$
$2n\pi $
$(2n + 1)\,\pi $
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.
જો $|k|\, = 5$ અને ${0^o} \le \theta \le {360^o}$, તો સમીકરણ $3\cos \theta + 4\sin \theta = k$ ની કેટલા ભિન્ન ઉકેલ શક્ય છે ?
સમીકરણ $\cos 2\theta = \sin \alpha ,$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\sec x=2$
સમીકરણ ${\rm{cosec}}\theta + 2 = 0$ નું સમાધાન કરે તેવી $\theta (0 < \theta < {360^o})$ ની કિમતો મેળવો.