यदि प्रकाश का वेग $(c)$, गुरुत्वीय त्वरण $(g)$ तथा दाब $(P)$ को मूल राशि माना जाए तो, गुरुत्वाकर्षण नियतांक की विमा होगी
${c^2}{g^0}{p^{ - 2}}$
${c^0}{g^2}{p^{ - 1}}$
$c{g^3}{p^{ - 2}}$
${c^{ - 1}}{g^0}{p^{ - 1}}$
एक विशेष मात्रक पद्धति निकाय (system of units) में, एक भौतिकी राशि को इलेक्ट्रॉनिक आवेश $e$, इलेक्ट्रॉन द्रव्यमान $m_e$ प्लांक नियतांक (Planck's constant) $h$ और कूलाम्ब नियतांक $k=\frac{1}{4 \pi \epsilon_0}$ के रूप में निरूपित किया जाता है, जहाँ $\epsilon_0$ निर्वात का परावेधुतांक (permittivity) है। इन भौतिकीय नियतांको के रूप में, चुम्बकीय क्षेत्र की विमा (dimension) $[B]=[e]^\alpha\left[m_e\right]^\beta[h]^\gamma[k]^\delta$ है। $\alpha+\beta+\gamma+\delta$ का मान. . . . . है ।
$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी
राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी
एक स्तम्भ, जिसमें $\eta $ श्यानता गुणांक का श्यान द्रव भरा है, में से होकर एक स्टील की छोटी गेंद जिसकी त्रिज्या $r$ है, को गुरुत्वीय त्वरण के अधीन गिराया जाता है। कुछ समय पश्चात गेंद एक नियत मान ${v_T}$ जिसे सीमान्त मान कहते है, को प्राप्त कर लेती है। सीमान्त वेग ${\rm{(i)}}$गेंद के द्रव्यमान $m$ पर ${\rm{(ii)}}$ $\eta $ पर ${\rm{(iii)}}$ $r$ पर ${\rm{(iv)}}$ और गुरुत्वीय त्वरण $g$ पर निर्भर करता है। निम्न में से कौनसा सम्बन्ध विमीय रुप से सही है