નીચેની સુરેખ સમીકરણ સંહતિ  $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$  ;$x-y+4 z=8$

  • [JEE MAIN 2021]
  • A

    $\alpha+\beta^{2}+\gamma^{3}=12$ નું સમાધાન કરતો ઉકેલ $(\alpha, \beta, \gamma)$ છે.

  • B

    અસંખ્ય ઉકેલો છે.

  • C

    એક પણ ઉકેલ નથી.

  • D

    અનન્ય ઉકેલ છે.

Similar Questions

સમીકરણની સંહતિ $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ ને એકાકી ઉકેલ ધરાવે તેનો આધાર . . . પર છે.

નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

જો સમીકરણ સંહતિ

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.

  • [JEE MAIN 2024]

રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો

  • [JEE MAIN 2019]

જો $a,b,c$ એ ધન વાસ્તવિક સંખ્યા છે. તો આપલે સમીકરણ સંહતિ $x, y$ અને $z$ ના સ્વરૂપે $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ હોય તો ઉકેલની સંખ્યા મેળવો.

  • [IIT 1995]