The following results have been obtained during the kinetic studies of the reaction:

$2 A+B \rightarrow C+D$

Experiment  $[ A ] / mol L ^{-1}$ $[ B ] / mol L ^{-1}$ Initial rate of formation of $D / mol \,L ^{-1} \,min ^{-1}$
$I$ $0.1$ $0.1$ $6.0 \times 10^{-3}$
$II$ $0.3$ $0.2$ $7.2 \times 10^{-2}$
$III$ $0.3$ $0.4$ $2.88 \times 10^{-1}$
$IV$ $0.4$ $0.1$ $2.40 \times 10^{-2}$

Determine the rate law and the rate constant for the reaction.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the order of the reaction with respect to $A$ be $x$ and with respect to $B$ be $y$

Therefore, rate of the reaction is qiven by

Rate $=k[ A ]^{x}[ B ]^{y}$

According to the question,

$6.0 \times 10^{-3}=k[0.1]^{x}[0.1]^{y}$          ........$(i)$

$7.2 \times 10^{-2}=k[0.3]^{x}[0.2]^{y}$           ..........$(ii)$

$2.88 \times 10^{-1}=k[0.3]^{x}[0.4]^{y}$          .........$(iii)$

$2.40 \times 10^{-2}=k[0.4]^{x}[0.1]^{y}$          ...........$(iv)$

Dividing equation $(iv)$ by $(i)$, we obtain

$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}}=\frac{k[0.4]^{x}[0.1]^{y}}{k[0.1]^{x}[0.1]^{y}}$

$\Rightarrow 4=\frac{[0.4]^{x}}{[0.1]^{x}}$

$ \Rightarrow 4 = {\left( {\frac{{0.4}}{{0.1}}} \right)^x}$

$\Rightarrow(4)^{1}=4^{x}$

$\Rightarrow x=1$

Dividing equation $(iii)$ by $(ii)$, we obtain

$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}}=\frac{k[0.3]^{x}[0.4]^{y}}{k[0.3]^{x}[0.2]^{y}}$

$ \Rightarrow 4 = {\left( {\frac{{0.4}}{{0.2}}} \right)^y}$

$\Rightarrow 4=2^{y}$

$\Rightarrow 2^{2}=2^{y}$

$\Rightarrow y=2$

Therefore, the rate law is

Rate $=k[ A ][ B ]^{2}$

$\Rightarrow \quad k=\frac{\text { Rate }}{[ A ][ B ]^{2}}$

From experiment $I$, we obtain

$k=\frac{6.0 \times 10^{-3} \,mol\, L ^{-1} \,min ^{-1}}{\left(0.1\, mol\, L ^{-1}\right)\left(0.1 \,mol\, L ^{-1}\right)^{2}}$

$=6.0 L ^{2} \,mol ^{-2}\, min ^{-1}$

From experiment $II$, we obtain

$k=\frac{7.2 \times 10^{-2} \,mol \,L ^{-1} \,min ^{-1}}{\left(0.3\, mol\, L ^{-1}\right)\left(0.2 \,mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

From experiment $III$, we obtain

$k=\frac{2.88 \times 10^{-1}\, mol\, L ^{-1}\, min ^{-1}}{\left(0.3 \,mol\, L ^{-1}\right)\left(0.4\, mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

From experiment $IV ,$ we obtain

$k=\frac{2.40 \times 10^{-2}\, mol\, L ^{-1} \,min ^{-1}}{\left(0.4\, mol\, L ^{-1}\right)\left(0.1 \,mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

Therefore, rate constant, $k=6.0 \,L ^{2}\, mol ^{-2}\, min ^{-1}$

Similar Questions

For the reaction $C{H_3}COOC{H_3} + {H_2}O\xrightarrow{{{H^ + }}}$ $C{H_3}COOH + C{H_3}OH$ The progress of the process of reaction is followed by

The rate of reaction between $A$ and $B$ increases by a factor of  $100,$ when the concentration of $A$ is increased $10$ folds. The order of reaction with respect to $A$ is

The reaction, $X + 2Y + Z \to N$ occurs by the following mechanism

$(i)$ $X + Y \rightleftharpoons M$      very rapid equilibrium

$(ii)$ $M + Z \to P$      slow

$(iii)$ $O + Y \to N$      very fast

What is the rate law for this reaction

If the concentration of the reactants is increased, the rate of reaction

By “the overall order of a reaction”, we mean