For the reaction $C{H_3}COOC{H_3} + {H_2}O\xrightarrow{{{H^ + }}}$ $C{H_3}COOH + C{H_3}OH$ The progress of the process of reaction is followed by
Finding the amount of methanol formed at different intervals
Finding the amount of acetic acid formed at different intervals
Using a voltmeter
Using a polarimeter
Reaction rate between two substance $A$ and $B$ is expressed as following $:$ rate $= k[A ]^n[B]^m$ If the concentration of $A$ is doubled and concentration of $B$ is made half of initial concentration, the ratio of the new rate to the earlier rate will be
If the rate of the reaction is equal to the rate constant, the order of the reaction is
For the reaction $A + B \to $ products, what will be the order of reaction with respect to $A$ and $B$ ?
Exp. | $[A]\,(mol\,L^{-1})$ | $[B]\,(mol\,L^{-1})$ | Initial rate $(mol\,L^{-1}\,s^{-1})$ |
$1.$ | $2.5\times 10^{-4}$ | $3\times 10^{-5}$ | $5\times 10^{-4}$ |
$2.$ | $5\times 10^{-4}$ | $6\times 10^{-5}$ | $4\times 10^{-3}$ |
$3.$ | $1\times 10^{-3}$ | $6\times 10^{-5}$ | $1.6\times 10^{-2}$ |
The inversion of cane sugar is represented by${C_{12}}{H_{22}}{O_{11}} + {H_2}O \to {C_6}{H_{12}}{O_6} + {C_6}{H_{12}}{O_6}$ It is a reaction of
The half life for the decomposition of gaseous compound $A$ is $240\,s$ when the gaseous pressure was $500\,Torr$ initially. When the pressure was $250\,Torr$, the half life was found to be $4.0\,min$. The order of the reaction is....... (Nearest integer)