Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है

$1=a_{1}=a_{2}$ तथा $a_{n}=a_{n-1}+a_{n-2}, n \cdot>2$ तो

$\frac{a_{n+1}}{a_{n}}$ ज्ञात कीजिए, जबकि $n=1,2,3,4,5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$1=a_{1}=a_{2}$

$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$

$\therefore a_{3}=a_{2}+a_{1}=1+1=2$

$a_{4}=a_{3}+a_{2}=2+1=3$

$a_{5}=a_{4}+a_{3}=3+2=5$

$a_{6}=a_{5}+a_{4}=5+3=8$

For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$

For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$

For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$

For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$

For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$

Similar Questions

यदि किसी समान्तर श्रेणी के $p$ वें पद का $p$ गुना, $q$ वें पद के $q$ गुना के बराबर है, तब $(p + q)$ वाँ पद है

यदि $\left\{ a _{ i }\right\}_{ i =1}^{ n }$ (जहाँ $n$ सम पूर्णांक है) समान्तर श्रेढ़ी है जिसका सार्वअन्तर $1$ तथा $\sum \limits_{ i =1}^{ n } a _{ i }=192$, $\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ है, तो $n$ बराबर है:

  • [JEE MAIN 2022]

यदि किसी समांतर श्रेणी की तीन संख्याओं का योग $24$ है तथा उनका गुणनफल $440$ है, तो संख्याएँ ज्ञात कीजिए।

यदि $x=\sum_{n=0}^{\infty} a^n, y=\sum_{n=0}^{\infty} b^n, z=\sum_{n=0}^{\infty} c^n$ है, जहां $a , b , c$ समान्तर श्रेणी में है और $| a |<1,| b | < 1$, $| c | < 1, abc \neq 0$ है तब

  • [JEE MAIN 2022]

यदि $\tan \,n\theta  = \tan m\theta $ हो, तो $\theta $ के विभिन्न मान होंगे