The Fibonacci sequence is defined by

$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$

Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$1=a_{1}=a_{2}$

$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$

$\therefore a_{3}=a_{2}+a_{1}=1+1=2$

$a_{4}=a_{3}+a_{2}=2+1=3$

$a_{5}=a_{4}+a_{3}=3+2=5$

$a_{6}=a_{5}+a_{4}=5+3=8$

For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$

For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$

For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$

For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$

For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$

Similar Questions

If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals

  • [AIEEE 2002]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=2^{n}$

Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :

  • [JEE MAIN 2021]

Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$ 

Let $a_1, a_2, a_3 \ldots$ be in an $A.P.$ such that $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. If $\sum_{ k =1}^{ n } a _{ k }=0$, then $n$ is:

  • [JEE MAIN 2025]