रेखा $x + 2y = 3$ के समान्तर, वृत्त ${x^2} + {y^2} - 2x = 0$ के अभिलम्ब का समीकरण है
$2x + y - 1 = 0$
$2x + y + 1 = 0$
$x + 2y - 1 = 0$
$x + 2y + 1 = 0$
वृत्त ${x^2} + {y^2} = {a^2}$ पर रेखा $\sqrt 3 x + y + 3 = 0$ के समान्तर स्पर्श रेखाओं के समीकरण हैं
$x = 7$ वृत्त ${x^2} + {y^2} - 4x - 6y - 12 = 0$ को स्पर्श करती है तब एक स्पर्श बिन्दु के निर्देशांक हैं
बिन्दु $(\alpha ,\beta )$ से वृत्त $a{x^2} + a{y^2} = {r^2}$ पर खींची गयी स्पर्श रेखा की लम्बाई का वर्ग है
मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् हैं, यदि
रेखा $y = 2x + c$ को वृत्त ${x^2} + {y^2} = 16$ की स्पर्श रेखा होने के लिए $c$ का मान है