रेखा $y = 2x + c$ को वृत्त ${x^2} + {y^2} = 16$ की स्पर्श रेखा होने के लिए $c$ का मान है
$ - 16\sqrt 5 $
$20$
$4\sqrt 5 $
$16\sqrt 5 $
वृत्त ${x^2} + {y^2} - 6x + 4y = 12$ की उन स्पर्श रेखाओं, जो रेखा $4x + 3y + 5 = 0$ के समान्तर हो, के समीकरण हैं
यदि वक्र $x^{2}=y-6$ के बिंदु $(1,7)$ पर बनी स्पशरिखा वृत्त $x^{2}+y^{2}+16 x+12 y+c=0$ को स्पर्शे करती है, तो $c$ का मान है
माना त्रिज्या 5 का एक वृत्त $C , x$-अक्ष के नीचे स्थित है। रेखा $L _1=4 x +3 y -2$ वृत्त $C$ के केन्द्र $P$ से गुजरती है तथा $L _2: 3 x -4 y -11=0$ को $Q$ पर प्रतिच्छेद करती है। रेखा $L _2, C$ को बिन्दु $Q$ पर स्पर्श करती है। तो $P$ की रेखा $5 x -12 y +51=0$ से दूरी हैं
रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है
माना वृत्त $( x -2)^2+( y +1)^2=\frac{169}{4}$ की एक जीवा $AB$ की लम्बाई 12 है। यदि $A$ तथा $B$ पर खींची गई वृत्त की स्पर्श रेखाएँ बिन्दु $P$ पर मिलती हैं, तो बिन्दु $P$ की जीवा $AB$ से दूरी का पाँच गुना बराबर है $........$.