वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है
$x + y = 0$
$x - y = \frac{{\sqrt 2 }}{3}$
$x - y = 0$
इनमें से कोई नहीं
माना एक वक्र के प्रत्येक बिंदु पर अभिलम्ब, बिन्दु $(a, b)$ से होकर जाते है। यदि यह वक्र बिंदुओं $(3,-3)$ तथा $(4,-2 \sqrt{2})$, से होकर जाता है, तथा $a -2 \sqrt{2} b =3$, तो $\left( a ^{2}+ b ^{2}+ ab \right)$ बराबर है
रेखा $y = x + c$ वृत्त ${x^2} + {y^2} = 1$ को दो सम्पाती बिन्दुओं पर काटेगी, यदि
यदि वृत्त ${x^2} + {y^2} + 2gx + 2fy = 0$ के द्वारा अक्षों से काटी गयी जीवाओं की लम्बाइयाँ क्रमश: $10$ तथा $24$ हों, तो वृत्त की त्रिज्या है
मूल बिन्दु से होकर जाने वाले वृत्त ${(x - 1)^2} + {y^2} = 1$ की जीवाओं के मध्य बिन्दुओं का बिन्दुपथ है
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $