The equation of the normal to the circle ${x^2} + {y^2} = 9$ at the point $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ is

  • A

    $x + y = 0$

  • B

    $x - y = \frac{{\sqrt 2 }}{3}$

  • C

    $x - y = 0$

  • D

    None of these

Similar Questions

If $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ touches the circle ${x^2} + {y^2} = {a^2}$, then point $(1/\alpha ,\,1/\beta )$ lies on a/an

The absolute difference between the squares of the radii of the two circles passing through the point $(-9,4)$ and touching the lines $x+y=3$ and $x-y=3$, is equal to ______. 

  • [JEE MAIN 2025]

The point of contact of the tangent to the circle ${x^2} + {y^2} = 5$ at the point $(1, -2)$ which touches the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$, is

Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is

  • [IIT 1987]

A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.

$1.$ A common tangent of the two circles is

$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$

$2.$ A possible equation of $L$ is

$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$

Give the answer question $1$ and $2.$

  • [IIT 2012]