If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
$V_{n+1} = aV_n + bV_{n-1}$
$V_{n+1} = aV_n + aV_{n-1}$
$V_{n+1} = aV_n -bV_{n-1}$
$V_{n+1} = aV_{n-1} -bV_n$
Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:
The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are