एकसमान रूप से आवेशित गोले की त्रिज्या $R$ है। इसके केन्द्र से $r$ दूरी एवं उत्पन्न विद्युत क्षेत्र के बीच सही ग्राफीय निरूपण होगा
दो $R$ व $2 R$ त्रिज्या वाले अचालक ठोस गोलको को जिन पर क्रमशः $\rho_1$ तथा $\rho_2$ एकसमान आयतन आवेश घनत्व है, एक दूसरे से स्पर्श करते हुए रखा गया है। दोंनो गोलकों के केन्द्रों से गुजरती हुई रेखा खींची जाती है। इस रेखा पर छोटे गोलक के केन्द्र से $2 R$ दूरी पर नेट विद्युत क्षेत्र शून्य है। तब अनुपात $\frac{\rho_1}{\rho_2}$ का मान हो सकता है:
गाउस नियम का उपयोग किए बिना किसी एकसमान रैखिक आवेश घनत्व $\lambda$ के लंबे पतले तार के कारण विध्युत क्षेत्र के लिए सूत्र प्राप्त कीजिए
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
$R$ त्रिज्या के किसी आवेशित चालक गोलीय कोश (खोल) के केन्द्र से $\frac{3 R}{2}$ दूरी पर विधुत क्षेत्र $E$ है। इसके केन्द्र से $\frac{R}{2}$ दूरी पर विधुत क्षेत्र होगा।
माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें