एक लम्बे बेलनाकार आयतन में एक समान आवेश घनत्व $\rho$ वितरित है। बेलनाकार आयतन की त्रिज्या $R$ है। एक आवेश कण $(q)$ बेलन के चारों तरफ वृत्ताकार पथ में घुमता है। आवेश कण की गतिज ऊर्जा है $....$
$\frac{\rho q R^{2}}{4 \varepsilon_{0}}$
$\frac{\rho q R^{2}}{2 \varepsilon_{0}}$
$\frac{q \rho}{4 \varepsilon_{0} R^{2}}$
$\frac{4 \varepsilon_{0} R^{2}}{q \rho}$
यदि एक गोलीय चालक, किसी बंद पृष्ठ से बाहर निकलता हुआ है, तो पृष्ठ से निर्गत कुल फ्लक्स होगा
$L$ मीटर भुजा की एक वर्गाकार सतह , पेपर के समतल में, किसी एक समान विधुत क्षेत्र में रखी है। विधुत क्षेत्र की तीव्रता $E( v / m )$ है और यह उसी समतल के अनुदिश, वर्ग की क्षैतिज भुजा से $\theta$ कोण पर कार्य करता है , जैसा की चित्र (आरेख ) में दिखाया गया है। इस सतह से सम्बद्ध विद्युत फ्लक्स, $volt.\, m$ में है
किसी लम्बे बेलनाकार कोश के ऊपरी भाग में धनात्मक पृष्ठ आवेश $\sigma$ तथा निचले भाग में ऋर्णात्मक पृष्ठ आवेश $-\sigma$ हैं। इस बेलन (सिलिन्डर) के चारों ओर विघुत क्षेत्र-रेखायें, यहाँ दर्शाये गये आरेखों में से किस आरेख के समान होंगी ?
(यह आरेख कंवल व्यवस्था आरेख है और स्कंल के अनुसार नहीं है )
विद्युत बल रेखाओं के बारे में असत्य कथन है
एक घन $\overrightarrow{ E }=150 y ^{2} \hat{ j }$ के विधुत क्षेत्र में रखा है। घन की भुजा $0.5\, m$ है तथा यह क्षेत्र में चित्रानुसार रखा है। घन के अन्दर आवेश $.....\times 10^{-11} {C}$ है।