किसी दिए गए तल के लिए ‘गॉस का नियम’ इस प्रकार लिखते हैं इससे हम यह निष्कर्ष निकाल सकते हैं कि
तल पर $E$, अवश्य ही शून्य है
तल के प्रत्येक बिन्दु पर $E$ तल के लम्बवत् है
तल से होकर सम्पूर्ण फ्लक्स, शून्य है
फ्लक्स, तल से होकर केवल बाहर जा रहा है
आधार त्रिज़्या $R$ एवं ऊँचाई $h$ वाला एक शंकु आधार के समान्तर एकसमान विद्युत क्षेत्र $\overrightarrow{ E }$ में स्थित है। शंकु में प्रवेश करने वाला विद्युत फ्लक्स है
एक घन के केन्द्र पर जिसकी प्रत्येक भुजा की लम्बाई $L$ है एक आवेश $q$ रखा है। घन से निर्गत विधुत फ्लक्स होगा:
$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?
$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है
$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है
$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है
$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है
${q_1},\;{q_2},\;{q_3}$ व ${q_4}$ बिन्दु आवेश चित्रानुसार स्थित हैं। $S$ एक $R$ त्रिज्या का गॉसीय पृष्ठ है। गॉस नियम के अनुसार निम्न में से क्या सही है
एकसमान पृष्ठीय आवेश घनत्व $\sigma_{+}$व $\sigma_{-}$वाली दो आवेशित पतली अनन्त लम्बी समतलीय शीटों पर विचार कीजिये जहाँ $\left|\sigma_{+}\right|>\left|\sigma_{-}\right|$है, तथा ये आपस में समकोण पर प्रतिच्छेदित करती है। इस निकाय के लिये विधुत क्षेत्र रेखाओं का सर्वाधिक सही चित्रण होगा:-