एक आवेश $q$ बेलनाकार पात्र के खुले मुँह के केन्द्र पर रखा है इस पात्र की सतह से गुजरने वाला फ्लक्स होगा
शून्य
$\frac{q}{{{\varepsilon _0}}}$
$\frac{q}{{2{\varepsilon _0}}}$
$\frac{{2q}}{{{\varepsilon _0}}}$
असत्य कथन छाँटिए :
$(a)$ गौसीय सतह में प्रवेश करने वाली विधुत बल रेखाएं ऋणात्मक फ्लक्स प्रदान करती है।
$(b)$ एक आवेश $'q'$ एक घन के केन्द्र पर रखा है। सभी फलको से निर्गत फ्लक्स समान होगा।
$(c)$ एक समान विधुत क्षेत्र में कोई आवेश न रखने वाली बन्द गौसीय सतह से निर्गत परिणामी फ्लक्स शून्य होता है।
$(d)$ जब विधुत क्षेत्र गौसीय सतह के समान्तर होती है, तो यह परिमित अशून्य फ्लक्स प्रदान करती है।
नीचे दिए गये विकल्पों में उपयुक्त उत्तर चुनिए :
किसी लम्बे बेलनाकार कोश के ऊपरी भाग में धनात्मक पृष्ठ आवेश $\sigma$ तथा निचले भाग में ऋर्णात्मक पृष्ठ आवेश $-\sigma$ हैं। इस बेलन (सिलिन्डर) के चारों ओर विघुत क्षेत्र-रेखायें, यहाँ दर्शाये गये आरेखों में से किस आरेख के समान होंगी ?
(यह आरेख कंवल व्यवस्था आरेख है और स्कंल के अनुसार नहीं है )
किसी बिंदु आवेश के कारण उस बिंदु को केंद्र मानकर खींचे गए $10\, cm$ त्रिज्या के गोलीय गाउसीय पृष्ठ पर वैध्युत फ्लक्स $-1.0 \times 10^{3} Nm ^{2} / C$ । $(a)$ यदि गाउसीय पृष्ठ की शिज्या दो गुनी कर दी जाए तो पृष्ठ से कितना फ्लक्स गुजरेगा? $(b)$ बिंदु आवेश का मान क्या है?
प्रदर्शित चित्र में, $\mathrm{E}=2 \mathrm{x}^2 \hat{\mathrm{i}}-4 \mathrm{y} \hat{\mathrm{j}}+6 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}$ वैद्युत क्षेत्र में एक घनाभ स्थित है। घनाभ के अन्दर आवेश का परिणाम $\mathrm{n} \in_0 \mathrm{C}$ है। $\mathrm{n}$ का मान (यदि घनाभ की विमाएँ $1 \times 2 \times 3$ मी $^3$ है) हैं।
एक घन के केन्द्र पर जिसकी प्रत्येक भुजा की लम्बाई $L$ है एक आवेश $q$ रखा है। घन से निर्गत विधुत फ्लक्स होगा: