$10 \,cm$ ત્રિજ્યાના એકરૂપ વિદ્યુતભારીત અવાહક ગોળાના કેન્દ્રથી $20 \,cm$ અંતરે વિદ્યુતક્ષેત્ર $E$ છે. તો $5 \,cm$ અંતરે કેટલું હશે ?
$16 E$
$4 E$
$2 E$
Zero
$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?
અનુક્રમે, $+ \sigma$ અને $+ \lambda$ વિદ્યુતભાર ધનતા ધરાવતા એક અનંત પૃષ્ઠ વિદ્યુતભાર અને અનંત રેખીય વિદ્યુતભારને, એકબીજાને સમાંતર $5\,m$ અંતરે રાખવામાં આવે છે. બિંદુ $P$ અને $Q$ એ રેખીય વિદ્યુતભારથી લંબઅંતરે પૃષ્ઠ તરફ અનુક્રમે $\frac{3}{\pi}\, m$ અને $\frac{4}{\pi}\,m$ અંતરે રહેલા બિંદુ છે. બિંદ્દુ $P$ અને $Q$ આગળ પરિણામી વિદ્યુતક્ષેત્ર ના મૂલ્યો અનુક્રમે $E_P$ અને $E _Q$ છે. જો $2|\sigma|=|\lambda|$ હોય, તો $\frac{E_P}{E_Q}=\frac{4}{a}$ મળે છે. $a$ નું મૂલ્ય ....... થશે.
સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
અનુસાર બદલાતી ગોલીય સંમિત વિદ્યુતભાર વહેંચણી વિચારો,જ્યાં $r ( r < R )$ એ કેન્દ્રથી અંતર છે (આકૃતિ જુઓ) $P$ બિંદુ આગળ વિદ્યુતક્ષેત્ર $......$ હશે.
$r_1$ અને $r_2$ ત્રિજ્યાની સમકેન્દ્રી રિંગ પર $Q_1$ અને $Q_2$ વિધુતભાર છે તો કેન્દ્રથી $r$ $(r_1 < r < r_2)$ અંતરે વિધુતક્ષેત્ર શોધો