$r_1$ અને $r_2$ ત્રિજ્યાની સમકેન્દ્રી રિંગ પર $Q_1$ અને $Q_2$ વિધુતભાર છે તો કેન્દ્રથી $r$ $(r_1 < r < r_2)$ અંતરે વિધુતક્ષેત્ર શોધો
$\frac{{{Q_1} + {Q_2}}}{{4\pi { \in _0}{{({r_1} + {r_2})}^2}}}$
$\frac{{{Q_1} + {Q_2}}}{{4\pi { \in _0}{r^2}}}$
$\frac{{{Q_1}}}{{4\pi { \in _0}{r^2}}}$
$\frac{{{Q_2}}}{{4\pi { \in _0}{r^2}}}$
ગોસના નિયમના ઉપયોગો જણાવો.
બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.
ત્રિજયા $‘a’$ અને ત્રિજયાા $‘b’$ ધરાવતા બે સમકેન્દ્રિય ગોળા ( જુઓ ચિત્ર ) ની વચ્ચેના ભાગમાં વિદ્યુત ઘનતા $\rho = \frac{A}{r}$ છે.જયાં $A$ અચળાંક છે અને કેન્દ્ર થી અંતર $r$ છે. ગોળાઓના કેન્દ્ર પર બિંદુવત વિદ્યુતભાર $Q$ છે.ગોળાઓનના વચ્ચેના ભાગમાં વિદ્યુતક્ષેત્ર અચળ રહે તે માટેના $A$ નું મૂલ્ય છે.
$R-$ત્રિજ્યાનો ધાતુનો એક પોલો ગોળો નિયમીત રીતે વિજભારિત છે. કેન્દ્રથી $r$ અંતરે આ ગોળાને લીધે વિદ્યુત ક્ષેત્ર કેટલું હશે?
ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.