The electric field at $20 \,cm$ from the centre of a uniformly charged non-conducting sphere of radius $10 \,cm$ is $E$. Then at a distance $5 \,cm$ from the centre it will be
$16 E$
$4 E$
$2 E$
Zero
Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point $P$ is $\frac{x \sigma}{\epsilon_0}$. The value of $x$ is_____. (all quantities are measured in $SI$ units).
Two non-conducting solid spheres of radii $R$ and $2 \ R$, having uniform volume charge densities $\rho_1$ and $\rho_2$ respectively, touch each other. The net electric field at a distance $2 \ R$ from the centre of the smaller sphere, along the line joining the centres of the spheres, is zero. The ratio $\frac{\rho_1}{\rho_2}$ can be ;
$(A)$ $-4$ $(B)$ $-\frac{32}{25}$ $(C)$ $\frac{32}{25}$ $(D)$ $4$
Two parallel infinite line charges with linear charge densities $+\lambda\; \mathrm{C} / \mathrm{m}$ and $-\lambda\; \mathrm{C} / \mathrm{m}$ are placed at a distance of $2 \mathrm{R}$ in free space. What is the electric field mid-way between the two line charges?
Let $P\left( r \right) = \frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $P$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
Charges $Q, 2Q$ and $4Q$ are uniformly distributed in three dielectric solid spheres $1,2$ and $3$ of radii $R/2, R$ and $2 R$ respectively, as shown in figure. If magnitudes of the electric fields at point $P$ at a distance $R$ from the centre of spheres $1,2$ and $3$ are $E_1 E_2$ and $E_3$ respectively, then