વિધેય $y(x)$ ને ${2^x} + {2^y} = 2$ સબંધ દ્વારા વ્યાખ્યાયિત હોય તો તેનો પ્રદેશ મેળવો.
$(0, 1]$
$[0, 1]$
$( - \infty ,\;0]$
$( - \infty ,\;1)$
જો $0 < x < \frac{\pi }{2},$ હોય તો
વિધેય $f$ એ દરેક વાસ્તવિક $x \ne 1$ માટે સમીકરણ $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ નું પાલન કરે છે તો $f(7)$ મેળવો.
વક્ર $y = \frac{|x-x^2|}{x^2-x}$ નો ગ્રાફ નીચેનામાંથી ક્યો છે ?
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
વિધેય $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ ના વિકલીતનો પ્રદેશ મેળવો.