વિધેય $f$ એ દરેક વાસ્તવિક $x \ne 1$ માટે સમીકરણ $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ નું પાલન કરે છે તો $f(7)$ મેળવો.

  • A

    $8$

  • B

    $4$

  • C

    $-8$

  • D

    $11$

Similar Questions

જો $f(x) = sin\,x,\,\,g(x) = x.$

વિધાન $1:$ $f(x)\, \le \,g\,(x)$ દરેક  $x \in (0,\infty )$

વિધાન $2:$ $f(x)\, \le \,1$ દરેક $(x)\in (0,\infty )$ પરંતુ $g(x)\,\to \infty$ જો  $x\,\to \infty$ હોય તો .

  • [AIEEE 2012]

જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.

અહી $f: R \rightarrow R$ એ સતત વિધેય છે કે જેથી દરેક $x \in R$ માટે $f\left(x^2\right)=f\left(x^3\right)$ થાય. તો આપેલ વિધાન જુઓ.

$I.$ $f$ એ અયુગ્મ વિધેય છે.

$II.$ $f$ એ યુગ્મ વિધેય છે.

$III$. $f$ એ દરેક બિંદુ આગળ વિકલનીય છે તો  . .. .

  • [KVPY 2019]

જો $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ અને $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;તો $S :$

  • [JEE MAIN 2016]

$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$ પ્રમાણે વ્યાખ્યાયિત વિધેય $f: \mathbb{R} \rightarrow \mathbb{R}$ ધ્યાને લો. જો $f$ નું સંયોજન $\underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{1090 \cdots+1}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$ હોય, તો $\sqrt{3 \alpha+1}$ નું મૂલ્ચ .......... છે.

  • [JEE MAIN 2024]