જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
$4$
$5$
$6$
એકપણ નહિ
નીચેનામાંથી ક્યુ વિધેય છે?
અહી $f(x)=x^6-2 x^3+x^3+x^2-x-1$ અને $g(x)=x^4-x^3-x^2-1$ બે બહુપદી છે. અહી $a, b, c$ અને $d$ એ $g(x)=0$ ના બીજ હોય તો $f(a)+f(b)+f(c)+f(d)$ ની કિમંત મેળવો.
જો $f\ (x)$ વિધેય દરેક $x, y, \in N$ માટે $f\ (x + y) = f(x) f(y)$ ને સંતોષે જેથી $f(1) = 3$ અને $\sum\limits_{x\, = \,1}^n {{{f}}(x)} \, = \,120$ થાય. તો $n$ નું મૂલ્ય કેટલું થાય?
જો $\phi (x) = {a^x}$, તો ${\{ \phi (p)\} ^3} = . . .$
જો $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, તો $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ મળે.