ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.
$\left(\frac{3}{5}, \frac{4}{5}\right)$
$\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)$
$\left(\frac{2}{5}, \frac{4}{5}\right]$
$\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]$
વિધેય $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ નો પ્રદેશ મેળવો.
વિધેય $f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ નો પ્રદેશ્ગણ ........... થાય. $($ જ્યા $[.] \rightarrow G.I.F.)$
$f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$ પરના એક-એક અને વ્યાપ્ત વિધેયની સંખ્યા મેળવો કે જેથી $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ થાય.
$2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ થાય તેવા એક - એક વિધેયો $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ ની સંખ્યા ......... છે.
જો વિધેય $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ નો પ્રદેશ $(\alpha, \beta]$ હોય તો $\alpha+\beta$ ની કિમંત મેળવો.