The dimensions of physical quantity $X$ in the equation Force $ = \frac{X}{{{\rm{Density}}}}$ is given by
${M^1}{L^4}{T^{ - 2}}$
${M^2}{L^{ - 2}}{T^{ - 1}}$
${M^2}{L^{ - 2}}{T^{ - 2}}$
${M^1}{L^{ - 2}}{T^{ - 1}}$
A quantity $f$ is given by $f=\sqrt{\frac{{hc}^{5}}{{G}}}$ where $c$ is speed of light, $G$ universal gravitational constant and $h$ is the Planck's constant. Dimension of $f$ is that of
The dimension of the ratio of magnetic flux and the resistance is equal to that of :
Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$. If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$, where $k$ is a dimensionless constant. Correct values of $a, b$ and $c$ are
Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ are
Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as
$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$
where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are