Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$. If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$, where $k$ is a dimensionless constant. Correct values of $a, b$ and $c$ are
$a=1, b=-1, c=4$
$a=-1, b=1, c=4$
$a=2, b=-1, c=3$
$a=1, b=-2, c=-4$
The period of a body under SHM i.e. presented by $T = {P^a}{D^b}{S^c}$; where $P$ is pressure, $D$ is density and $S$ is surface tension. The value of $a,\,b$ and $c$ are
Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]
If velocity $[V],$ time $[T]$ and force $[F]$ are chosen as the base quantities, the dimensions of the mass will be
What is dimensional analysis ? Write limitation of dimensional analysis.
If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be