The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
$-60$
$60$
$120$
$-120$
Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$
Let $a \neq b$ be two non-zero real numbers.Then the number of elements in the set $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ is equal to
Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0, z \in C$. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$