The conjugate of $\frac{{{{(2 + i)}^2}}}{{3 + i}},$ in the form of $a + ib$, is
$\frac{{13}}{2} + i\,\left( {\frac{{15}}{2}} \right)$
$\frac{{13}}{{10}} + i\left( {\frac{{ - 15}}{2}} \right)$
$\frac{{13}}{{10}} + i\,\left( {\frac{{ - 9}}{{10}}} \right)$
$\frac{{13}}{{10}} + i\,\left( {\frac{9}{{10}}} \right)$
For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to
If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is
If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$