For any two complex numbers ${z_1},{z_2}$we have $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ then
${\mathop{\rm Re}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Im}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$
${\mathop{\rm Re}\nolimits} ({z_1}{z_2}) = 0$
${\mathop{\rm Im}\nolimits} ({z_1}{z_2}) = 0$
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$
Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$
The values of $z$for which $|z + i|\, = \,|z - i|$ are
Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then