${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
$\frac{{(2n)\,!}}{{(n - 1)!(n + 1)!}}$
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
इनमें से कोई नहीं
यदि धनात्मक पूर्णांकों $r > 1,n > 2$ के लिए ${(1 + x)^{2n}} $ के विस्तार में $x$ की $(3r)$ वीं तथा $(r + 2)$ वीं घांतों के गुणांक समान हों, तब
यदि ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ के विस्तार में $x $ का गुणांक $270$ हो, तो $k =$
${\left( {x + \frac{1}{{2x}}} \right)^{2n}}$ के विस्तार में मध्य पद है
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$ का मान ज्ञात कीजिए
$\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।