The coefficient of $\frac{1}{x}$ in the expansion of ${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
$\frac{{(2n)\,!}}{{(n - 1)!(n + 1)!}}$
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
None of these
In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$ is equal to
If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ and $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is
If $\left(\frac{3^{6}}{4^{4}}\right) \mathrm{k}$ is the term, independent of $\mathrm{x}$, in the binomial expansion of $\left(\frac{\mathrm{x}}{4}-\frac{12}{\mathrm{x}^{2}}\right)^{12}$, then $\mathrm{k}$ is equal to ...... .
If the coefficients of $x$ and $x^{2}$ in the expansion of $(1+x)^{p}(1-x)^{q}, p, q \leq 15$, are $-3$ and $-5$ respectively, then the coefficient of $x ^{3}$ is equal to $............$
The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to :