The angle subtended at the centre of a circle of radius $3$ metres by an arc of length $1$ metre is equal to
$20°$
$60°$
$\frac{1}{3}$ radian
$3$ radians
If $\frac{\sin ^4 x}{2}+\frac{\cos ^4 x}{3}=\frac{1}{5},$ then
$(A)$ $\tan ^2 x=\frac{2}{3}$ $(B)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{1}{125}$
$(C)$ $\tan ^2 x=\frac{1}{3}$ $(D)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{2}{125}$
Prove that: $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$
If $\tan \theta + \sec \theta = {e^x},$ then $\cos \theta $ equals
$\cos 15^\circ = $
If $\tan A + \cot A = 4,$ then ${\tan ^4}A + {\cot ^4}A$ is equal to