If $\sin (\alpha - \beta ) = \frac{1}{2}$ and $\cos (\alpha + \beta ) = \frac{1}{2},$ where $\alpha $ and $\beta $ are positive acute angles, then

  • A

    $\alpha = 45^\circ ,\beta = 15^\circ $

  • B

    $\alpha = 15^\circ ,\beta = 45^\circ $

  • C

    $\alpha = 60^\circ ,\beta = 15^\circ $

  • D

    None of these

Similar Questions

If $0 < x < \pi $ and $\cos x + \sin x = \frac{1}{2}$,then $tan \,x$ is  

  • [AIEEE 2006]

If $\sin x+\sin ^2 x=1, x \in\left(0, \frac{\pi}{2}\right)$, then $\left(\cos ^{12} x+\tan ^{12} x\right)+3\left(\cos ^{10} x+\tan ^{10} x+\cos ^8 x+\tan ^8 x\right)$ $+\left(\cos ^6 x+\tan ^6 x\right)$ is equal to

  • [JEE MAIN 2025]

Prove the $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

If $A$ lies in the second quadrant and $3\tan A + 4 = 0,$ the value of $2\cot A - 5\cos A + \sin A$ is equal to

$\cos 1^\circ .\cos 2^\circ .\cos 3^\circ .........\cos 179^\circ = $