Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$
$L.H.S.$ $=2 \sin ^{2} \,\frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}$
$=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}$
$=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8$
$=1+1+8$
$=10$
$= R . H.S$
Which of the following relations is correct
Find the value of $\tan \frac{13 \pi}{12}$
The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when
If in two circles, arcs of the same length subtend angles $60^{\circ}$ and $75^{\circ}$ at the centre, find the ratio of their radii.
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant $II$