$(\overrightarrow{{A}})$ અને $(\overrightarrow{{A}}-\overrightarrow{{B}})$ સદિશ વચ્ચેનો ખૂણો કેટલો થાય?
$\tan ^{-1}\left(\frac{-\frac{{B}}{2}}{{A}-{B} \frac{\sqrt{3}}{2}}\right)$
$\tan ^{-1}\left(\frac{{A}}{0.7 {B}}\right)$
$\tan ^{-1}\left(\frac{\sqrt{3} {B}}{2 {A}-{B}}\right)$
$\tan ^{-1}\left(\frac{{B} \cos \theta}{{A}-{B} \sin \theta}\right)$
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ છે, તો તેમનો સરવાળો બૈજિક રીતે કરો.
આકૃતિમાં $ABCDEF$ એક સમષટ્કોણ છે. $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ નું મૂલ્ય શું થશે? ($\overrightarrow {AO} $ માં)
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
$\overrightarrow {\left| {P\,} \right|} > \,\overrightarrow {\left| {Q\,} \right|} $ છે. તો તેમના મહત્તમ પરિણામી સદિશ અને લઘુતમ પરિણામી સદિશ વચ્ચેનો ખૂણો કેટલો મળે ?