If $a > 0$ and $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$, has magnitude $\sqrt {\frac{2}{5}} $, then $\bar z$ is equal to:
$ - \frac{3}{5} - \frac{1}{5}i$
$ - \frac{1}{5} - \frac{3}{5}i$
$ - \frac{1}{5} + \frac{3}{5}i$
$ \frac{1}{5} - \frac{3}{5}i$
If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.
If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
Let $a \neq b$ be two non-zero real numbers.Then the number of elements in the set $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ is equal to
If $z$ is a complex number such that $\left| z \right| \ge 2$ , then the minimum value of $\left| {z + \frac{1}{2}} \right|$:
Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -