बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :
$\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5}),$ लघु अक्ष के अंत्य बिंदु $(±1,0)$
यदि $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ और $16{x^2} + 25{y^2} = 400$ तो $P{F_1} + P{F_2}$ का मान है
माना $a , b$ तथा $\lambda$ धनात्मक वास्तविक संख्यायें है। माना परवलय $y ^2=4 \lambda x$ के नाभिलम्ब का अंतिम बिन्दु $P$ है तथा माना दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, बिन्दु $P$ से गुजरता है। यदि परवलय तथा दीर्घवृत्त के बिन्दु $P$ पर खींची गई स्पर्श रेखायें एक दूसरे के लम्बवत् हो, तो दीर्घवृत्त की उत्केन्द्रता होगी
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ की उत्केन्द्रता है
एक $12$ सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $P$ का बिंदुपथ ज्ञात कीजिए जो $x-$ अक्ष के संपर्क वाले सिरे से $3$ सेमी दूर है।