एक $12$ सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $P$ का बिंदुपथ ज्ञात कीजिए जो $x-$ अक्ष के संपर्क वाले सिरे से $3$ सेमी दूर है।
Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$
Then, $PB = AB - AP =(12-3)\, cm =9\, cm$ $[ AB =12 \,cm ]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\Delta PBQ$ , $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$
In $\Delta PRA$ , $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$
since, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$
Or, $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.
यदि एक दीर्घवृत्त की एक नाभि तथा संगत नियता के बीच की दूरी $8$ तथा उत्केन्द्रता $\frac{1}{2}$ हो, तो दीर्घवृत्त के लघुअक्ष की लम्बाई होगी
दीर्घवृत्त $9{x^2} + 36{y^2} = 324$, जिसकी नाभियाँ $S$ तथा $S'$ है, पर $P$ कोई बिन्दु है, तब $SP + S'P$ का मान होगा
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5}),$ लघु अक्ष के अंत्य बिंदु $(±1,0)$
यदि दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, रेखा $\frac{ x }{7}+\frac{ y }{2 \sqrt{6}}=1$ को $x$-अक्ष पर तथा रेखा $\frac{ x }{7}-\frac{ y }{2 \sqrt{6}}=1$ को $y$-अक्ष पर मिलता है, तो दीर्घवृत्त की उत्केन्द्रता है।
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$