The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m v^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Answer Every correct formula or equation must have the same dimensions on both sides of the equation. Also, only quantities with the same physical dimensions can be added or subtracted. The dimensions of the quantity on the right side are $\left[ M ^{2} L ^{3} T ^{-3}\right]$ for $( a ) ; \left[ M L ^{2} T ^{-2}\right]$ for $(b)$ and $(d)$: $\left[ MLT ^{-2}\right]$ for $(c)$. The quantity on the right side of $(e)$ has no proper dimensions since two quantities of different dimensions have been added. since the kinetic energy $K$ has the dimensions of $\left[ M L ^{2} T ^{-2}\right],$ formulas $(a), (c)$ and $(e)$ are ruled out. Note that dimensional arguments cannot tell which of the two, $(b)$ or $(d)$, is the correct formula. For this, one must turn to the actual definition of kinetic energy . The correct formula for kinetic energy is given by $(b)$.

Similar Questions

A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,

  • [KVPY 2017]

Given below are two statements: One is labelled as Assertion $(A)$ and other is labelled as Reason $(R)$.
Assertion $(A)$ : Time period of oscillation of a liquid drop depends on surface tension $(S)$, if density of the liquid is $p$ and radius of the drop is $r$, then $T = k \sqrt{ pr ^{3} / s ^{3 / 2}}$ is dimensionally correct, where $K$ is dimensionless.
Reason $(R)$: Using dimensional analysis we get $R.H.S.$ having different dimension than that of time period.
In the light of above statements, choose the correct answer from the options given below.

  • [JEE MAIN 2022]

A calorie is a unit of heat or energy and it equals about $4.2\; J$ where $1 \;J =1\; kg \,m ^{2} \,s ^{-2}$ Suppose we employ a system of units in which the unit of mass equals $\alpha\; kg$, the unit of length equals $\beta\; m$, the unit of time is $\gamma$ $s$. Show that a calorie has a magnitude $4.2 \;\alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.

Write principle of Homogeneity of dimension.

Velocity $(v)$ and acceleration $(a)$ in two systems of units $1$ and $2$ are related as $v _{2}=\frac{ n }{ m ^{2}} v _{1}$ and $a_{2}=\frac{a_{1}}{m n}$ respectively. Here $m$ and $n$ are constants. The relations for distance and time in two systems respectively are

  • [JEE MAIN 2022]