The equation $\frac{{dV}}{{dt}} = At - BV$ is describing the rate of change of velocity of a body falling from rest in a resisting medium. The dimensions of $A$ and $B$ are
The dimensions of physical quantity $X$ in the equation Force $ = \frac{X}{{{\rm{Density}}}}$ is given by
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
From the following combinations of physical constants (expressed through their usual symbols) the only combination, that would have the same value in different systems of units, is
Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$ then value of $c$ is given $p$ is pressure, $d$ is density and $E$ is energy