A calorie is a unit of heat or energy and it equals about $4.2\; J$ where $1 \;J =1\; kg \,m ^{2} \,s ^{-2}$ Suppose we employ a system of units in which the unit of mass equals $\alpha\; kg$, the unit of length equals $\beta\; m$, the unit of time is $\gamma$ $s$. Show that a calorie has a magnitude $4.2 \;\alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Given that,
$1$ calorie $=4.2(1\, kg )\left(1 \,m ^{2}\right)\left(1\, s ^{-2}\right)$
New unit of mass $=\alpha kg$
Hence, in terms of the new unit, $1 \,kg =\frac{1}{\alpha}=\alpha^{-1}$ In terms of the new unit of length, $1\, m =\frac{1}{\beta}=\beta^{-1}$ or $1\, m ^{2}=\beta^{-2}$
And, in terms of the new unit of time, $1\, s =\frac{1}{\gamma}=\gamma^{-1}$
$1\, s ^{2}=\gamma^{-2}$
$1 \,s ^{-2}=\gamma^{2}$
$\therefore 1$ calorie $=4.2\left(1 \alpha^{-1}\right)\left(1 \beta^{-2}\right)\left(1 \gamma^{2}\right)=4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$

Similar Questions

A highly rigid cubical block $A$ of small mass $M$ and side $L$ is fixed rigidly onto another cubical block $B$ of the same dimensions and of low modulus of rigidity $\eta $ such that the lower face of $A$ completely covers the upper face of $B$. The lower face of $B$is rigidly held on a horizontal surface. A small force $F$ is applied perpendicular to one of the side faces of $A$. After the force is withdrawn block $A$ executes small oscillations. The time period of which is given by

  • [IIT 1992]

If force $F$ , velocity $V$ and time $T$ are taken as fundamental units then dimension of force in the pressure is

If $x$  and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is  $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $

if Energy is given by $U = \frac{{A\sqrt x }}{{{x^2} + B}},\,$, then dimensions of $AB$ is

$Assertion$ : Specific gravity of a fluid is a dimensionless quantity.

$Reason$ : It is the ratio of density of fluid to the density of water

  • [AIIMS 2005]